GPS

GPS

A Global Positioning System (GPS, Globális Helymeghatározó Rendszer) az Amerikai Egyesült Államok Védelmi Minisztériuma (Department of Defense) által (elsődlegesen katonai célokra) kifejlesztett és üzemeltetett – a Föld bármely pontján, a nap 24 órájában működő – globális műholdas navigációs rendszer (GNSS).

A GPS-t alap kiépítésben 24 műholdból álló flotta alkotja, amelyek közepes magasságú Föld körüli pályán (angol rövidítéssel: MEO – Medium Earth Orbit), körülbelül 20 200 km magasságban keringenek. Minden műhold naponta kétszer kerüli meg a Földet. (Az Amerikai Egyesült Államok elkötelezett amellett, hogy legalább 24 működő GPS műhold elérhetőségét fenntartsa az esetek 95% -ában. A műholdakból általában ennél több van pályára állítva. Ennek oka részben az, hogy a műholdak élettartama véges.)

A GPS egy fejlett helymeghatározó rendszer, amellyel háromdimenziós helyzetmeghatározás végezhető a földfelszínen, vízfelszínen vagy levegőben. Pontossága jellemzően méteres nagyságrendű, de differenciális mérési módszerekkel, fix földi bázisállomás jelét is felhasználva akár milliméteres pontosságot is el lehet érni, valós időben. A GPS-t sok más technológiához hasonlóan katonai célokra fejlesztették ki, de ma már a civil élet számos területén széles körben alkalmazzák. Nagy előnye, hogy adatait felhasználva szolgáltatások sorát élvezhetjük a kis méretű eszköz által és növelhetjük kényelmünket, biztonságunkat.

A rendszerhez folyamatosan zárkózik fel az orosz GLONASZSZ, az Európai Unió által fejlesztett Galileo és a kínai Beidou-2 műholdas rendszer, kiegészítve, pontosítva azt.

Kialakuása

Az emberek számára utazásaik során hosszú időkön keresztül helymeghatározás céljára a Nap és a csillagok szolgáltattak információkat. A modern órák már több információt szolgáltattak a földrajzi pozíció meghatározására, de valódi áttörést a műholdak megjelenése hozott.

1957-ben a szovjetek fellőtték a Szputnyik–1-et, és a mesterséges hold tesztelése során egy új jelenséget figyeltek meg. A műhold által kibocsátott rádiójel hullámhosszának változásait elemezve - (a Doppler-effektust figyelembe véve) - pontosan meg tudták határozni a műhold helyzetét.

Szputnyik-1

Az amerikai haditengerészet 1958-ban kezdte navigációs rendszerét fejleszteni. A következő lépés az Amerikai Egyesült Államok Haditengerészetének (US Navy) fejlesztése volt, amikor 1964-ben a Transit nevű rendszert építették ki a Polaris ballisztikus rakétát hordozó tengeralattjárók és a felszíni hajók számára. A Transit rendszerben négy, egyenként 45 kg-os műhold keringett poláris pályán a Föld körül 1000 km magasságban, így a Doppler-effektust felhasználva egy mélytengeralattjáró is körülbelül 10-15 perc alatt képes volt pontos földrajzi helyzetét meghatározni. Alapkövetelmény volt a tervek szerint, hogy a passzív navigációs vevőkészülék helyzeti pontossága 0,1 tengeri mérföld legyen, naponta többször. Ezt a rendszer túlszárnyalta és 0,042 tengeri mérföld helyzeti pontosságot ért el. A Transit rendszert 1996-ban váltották fel a navigációs műholdak (GPS NAVSTAR).

A GPS eredeti elnevezése koncepciójának kialakításakor, 1973-ban Defense Navigation Satellite System (DNSS, Védelmi Navigációs Műholdrendszer) volt, amit még abban az évben a Navstar-GPS névvel váltottak fel, később ebből rövidült a ma használatos GPS elnevezés.

Felépítése

A mai GPS rendszer alapjait 1973-ban fektették le 24 Navstar műhold segítségével, amelyek mindegyike naponta kétszer kerüli meg a Földet 20 200 km-es magasságban. Elhelyezkedésük olyan, hogy minden pillanatban a Föld minden pontjáról legalább négy látszódjon egyszerre. A 24 műhold hat csoportba van osztva, a Föld körül keringve egymástól 60°-os kelet-nyugati eltérésű pályán mozognak. Az égbolton sík terepről egyszerre 7-12 műhold látható, melyből a helymeghatározáshoz 4, a tengerszint feletti magasság meghatározásához pedig további egy hold szükséges.

A helymeghatározási módszer

A helymeghatározás elmélete analitikus geometriai módszereken nyugszik. A műholdas helymeghatározó rendszer időmérésre visszavezetett távolságmérésen alapul. Mivel ismerjük a rádióhullámok terjedési sebességét, és ismerjük a rádióhullám kibocsátásának és beérkezésének idejét, ezek alapján meghatározhatjuk a forrás távolságát. A háromdimenziós térben három ismert helyzetű ponttól mért távolság pontos ismeretében már meg tudjuk határozni a pozíciót. A további műholdakra mért távolságokkal pontosítani tudjuk ezt az értéket.

Az eljárás első lépései

  1. A GPS-vevő folyamatosan rendelkezzen a műholdakon lévő atomórák pontos idejével
  2. Legalább 4 műhold láthatósága esetén „háromszögeléssel” meghatározható a földfelszíni pozíció. A geodéziai GPS-műszerek használatához legalább 5 műhold egyidejű vétele szükséges
  3. Ehhez ismerni kell a vevő és a műholdak pontos távolságát, amihez a műholdak aktuális pályájának és a kisugárzott jel megérkezési idejének ismerete szükséges
  4. Hibák és korrekciók

1.lépés

A GPS-vevőnek először a műholdakkal folyamatosan egyeztetett pontos időre van szüksége, ehhez a PRN-kódot használja fel. A PRN-kód jelzi a vevőnek, hogy melyik műhold jelét veszi, és az adott műholdtól milyen álvéletlen jelsorozatra számíthat. A ténylegesen megkapott és a vevőben várt jel egyedi mintázattal rendelkezik, ennek ismeretében a vevő megállapítja a jelek időbeli eltérését és a saját óráját ennek megfelelően járatja.

2.lépés

Igazából nem „háromszögelésről” van szó, mivel általában több mint 3 műhold látható, de az eljárás hasonló, ugyanis háromszögekkel állapítjuk meg egy ismeretlen pont (a vevő) térbeli helyzetét. Elméletileg 3 műhold is elég lenne ehhez, ha mindegyik órája tökéletesen járna, a gyakorlatban azonban a rendszer ismert pontatlanságait figyelembe véve legalább 4 műholdat használnak a pozíció meghatározásához. A geodéziai műszerek minimum 5 műhold folyamatos vételét igénylik. A műholdaktól való távolság kiszámításához ugyanazt a módszert használja a vevő, mint a pontos idő szinkronizálásánál: a műholdról sugárzott és a vevőben meglévő idők eltérését állapítja meg. Az időbeli különbség szorozva a rádióhullámok terjedési sebességével kiadja a vevő és az adott műhold távolságát.

Az első műholdtól való r1 távolság azt jelenti, hogy a megfigyelő olyan r1 sugarú gömbön helyezkedik el, aminek a középpontja az első műhold. A második műholdtól való r2 távolság azt jelenti, hogy a megfigyelő ezen a második a gömbön is rajta van, tehát a két gömb metszésvonalán, azaz egy körön helyezkedik el. A harmadik műholdtól való távolságot felhasználva tehát a megfigyelő az r1, r2 és r3 sugarú gömbök metszéspontján helyezkedik el. Az előbbiek szerint az r3 gömb az r1, r2 gömbök metszőkörét két pontban fogja elmetszeni, amelyek közül a rendszer ki tudja választani a valóságosat illetve a hamisat: a másik ugyanis vagy nagyon a Föld belsejében vagy a világűrben lesz. Ámde a fenti eljárás csak akkor ad pontos eredményt, ha a vevő órája szinkronban jár a műholdakéval. Ezt a 4. műhold segítségével oldják meg: ha az óra szinkronban jár, akkor a 4., az r4 sugarú gömb pontosan a három gömb metszéspontján megy át, ha viszont nem áll fenn a szinkron, akkor minden gömbhármas más és más metszéspontot ad. Ezért a vevőberendezés úgy korrigálja a saját órájának a beállítását, hogy a négy metszéspont végül egy pontba kerüljön. Ezért kell legalább 4 műholdat figyelni, és ezért nem kell atomórát építeni a vevőkészülékbe.

3.lépés

A vevő és a műholdak távolságához ismerni kell a műholdak aktuális pozícióit. Ehhez a műholdak kisugározzák az ún. „almanac” adatokat (ez a vevőkészülék bekapcsolásakor, illetve később periodikusan megtörténik), amik az egyes műholdak pályaadatait tartalmazza. Ennek ismeretében a vevő kiszámítja a műhold Föld feletti helyzetét. Az Amerikai Védelmi Minisztérium (USDOD) folyamatosan radarokkal követi a műholdakat és méri azok földfelszínhez viszonyított pozícióját, sebességét és magasságát. Ezekkel az adatokkal korrigálják a műholdakban lévő pályaelemeket (amiket a műholdak lesugároznak a vevő felé).

4.lépés

A műholdakon lévő atomórák nagyon pontosak, de nem tökéletesek. Az eltéréseket a földi állomások figyelik, és szükség esetén korrigálják azokat. A pályaelemek folyamatosan változnak a különféle zavaró hatások következményeként (ezeket összefoglaló néven „efemerisz-hibának” nevezik, mivel végső soron a műhold pályájára vannak hatással). Ilyen zavaró hatás a Föld anyageloszlásának, és így gravitációjának egyenetlenségei, a Nap és a Hold gravitációs hatása, illetve a napszél eltérítő ereje (ami mindig más irányból hat a műholdra). Bár ezek a hatások önmagukban kis pontatlanságot okoznak, mindet figyelembe veszik a pontos pályaszámításokhoz. Jelentősen nagyobb torzítást okoz a rendszerben a légkör hatása a rádióhullámokra. A számítások leírásánál feltételeztük, hogy egyszerűen a távolság = sebesség x idő képlettel számolunk. Ez igaz is, csakhogy a rádióhullámok sebessége csak vákuumban állandó. Ahogy a műhold jele a Föld felé terjed, áthalad az elektromosan töltött részecskéket tartalmazó Van Allen sugárzási övön, majd a vízpárát tartalmazó troposzférán, és mindkettőben valamennyire lelassul a vákuumbeli sebességhez képest. Több módszer kínálkozik ennek a hibának a minimalizálására. Az egyik, hogy a hatás mértéke ismert, a korábbi mérésekből alkotott modellek alapján jól közelíthető egy adott napra. Azonban a légkör állapota soha nem állandó és soha nem pontosan ugyanaz. Ezért általában más módszert használnak a hibák kiküszöbölésére. Felhasználható az L1 és L2 frekvenciák terjedésének különbözősége, ugyanis a légkör hatása frekvenciafüggő (ezt a módszert csak a katonai vevők tudják kihasználni).

A GPS műholdak pályái:

A GPS műholdak a Föld felszíne felett nagyjából 3 Föld-sugárnyi magasságban keringenek. Pályájuk kör alakú, egy sziderikus nap alatt két keringést végeznek. Pályájuk inklinációja az Egyenlítőhöz képest 55°. A gyakorlatban a jel vétele akkor a legjobb, ha a műhold legalább 10-15°-kal a horizont fölött látható.

A GPS hasznosítása:

  1. közlekedési (civil, teherszállítás, rendőrség, tűzoltóság, mentők, autóbuszok)
  2. gépjárművédelem (lopás ellen)
  3. geodézia, földmérés
  4. természetjárás
  5. környezeti kutatás (madármegfigyelés, vonuláskövetés)
  6. játékok (geocaching.hu, Index.hu embervadászat, gpsgames.hu)

Itt többet olvashatsz róla:

fel